Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.208
Filtrar
1.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 208-211, 2024 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-38605623

RESUMO

In recent years, new degradable materials have been applied to cardiovascular implants. Cardiovascular implants with different physicochemical properties and degradation properties have special endpoints for their biological evaluation. In this study, the end points of biological evaluation of degradable cardiovascular implants were reviewed by taking vascular stents and occluders as examples.


Assuntos
Implantes Absorvíveis , Sistema Cardiovascular , Stents , Materiais Biocompatíveis/química
2.
J Mech Behav Biomed Mater ; 154: 106510, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593720

RESUMO

Stress corrosion cracking (SCC) can be a crucial problem in applying rare earth (RE) Magnesium alloys in environments where mechanical loads and electrochemical driven degradation processes interact. It has been proven already that the SCC behavior is associated with microstructural features, compositions, loading conditions, and corrosive media, especially in-vivo. However, it is still unclear when and how mechanisms acting on multiple scales and respective system descriptors predictable contribute to SCC for the wide set of existing Mg alloys. In the present work, suitable literature data along SCC of Mg alloys has been analyzed to enable the development of a reliable SCC model for MgGd binary alloys. Pearson correlation coefficient and linear fitting are utilized to describe the contribution of selected parameters to corrosion and mechanical properties. Based on our data analysis, a parameter ranking is obtained, providing information on the SCC impact with regard to ultimate tensile strength (UTS) and fracture elongation of respective materials. According to the analyzed data, SCC susceptibility can be grouped and mapped onto Ashby type diagrams for UTS and elongation of respective base materials tested in air and in corrosive media. The analysis reveals the effect of secondary phase content as a crucial materials descriptor for our analyzed materials and enables better understanding towards SCC model development for Mg-5Gd alloy based implant.


Assuntos
Ligas , Cáusticos , Teste de Materiais , Ligas/química , Corrosão , Análise de Dados , Materiais Biocompatíveis/química
3.
Sci Rep ; 14(1): 7912, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575715

RESUMO

Recent advancements in the field of biomedical engineering have underscored the pivotal role of biodegradable materials in addressing the challenges associated with tissue regeneration therapies. The spectrum of biodegradable materials presently encompasses ceramics, polymers, metals, and composites, each offering distinct advantages for the replacement or repair of compromised human tissues. Despite their utility, these biomaterials are not devoid of limitations, with issues such as suboptimal tissue integration, potential cytotoxicity, and mechanical mismatch (stress shielding) emerging as significant concerns. To mitigate these drawbacks, our research collective has embarked on the development of protein-based composite materials, showcasing enhanced biodegradability and biocompatibility. This study is dedicated to the elaboration and characterization of an innovative suture fabricated from human serum albumin through an extrusion methodology. Employing a suite of analytical techniques-namely tensile testing, scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA)-we endeavored to elucidate the physicochemical attributes of the engineered suture. Additionally, the investigation extends to assessing the influence of integrating biodegradable organic modifiers on the suture's mechanical performance. Preliminary tensile testing has delineated the mechanical profile of the Filament Suture (FS), delineating tensile strengths spanning 1.3 to 9.616 MPa and elongation at break percentages ranging from 11.5 to 146.64%. These findings illuminate the mechanical versatility of the suture, hinting at its applicability across a broad spectrum of medical interventions. Subsequent analyses via SEM and TGA are anticipated to further delineate the suture's morphological features and thermal resilience, thereby enriching our comprehension of its overall performance characteristics. Moreover, the investigation delves into the ramifications of incorporating biodegradable organic constituents on the suture's mechanical integrity. Collectively, the study not only sheds light on the mechanical and thermal dynamics of a novel suture material derived from human serum albumin but also explores the prospective enhancements afforded by the amalgamation of biodegradable organic compounds, thereby broadening the horizon for future biomedical applications.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Humanos , Estudos Prospectivos , Materiais Biocompatíveis/química , Suturas , Albuminas , Albumina Sérica Humana
4.
ACS Appl Bio Mater ; 7(4): 2325-2337, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38483087

RESUMO

This article addresses the entire life cycle of the all-green fibrous materials based on poly(3-hydroxybutyrate) (PHB) containing a natural biocompatible additive Hemin (Hmi): from preparation, service life, and the end of life upon in-soil biodegradation. Fibrous PHB/Hmi materials with a highly developed surface and interconnected porosity were prepared by electrospinning (ES) from Hmi-containing feed solutions. Structural organization of the PHB/Hmi materials (porosity, uniform structure, diameter of fibers, surface area, distribution of Hmi within the PHB matrix, phase composition, etc.) is shown to be governed by the ES conditions: the presence of even minor amounts of Hmi in the PHB/Hmi (below 5 wt %) serves as a powerful tool for the control over their structure, performance, and biodegradation. Service characteristics of the PHB/Hmi materials (wettability, prolonged release of Hmi, antibacterial activity, breathability, and mechanical properties) were studied by different physicochemical methods (scanning electron microscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, differential scanning calorimetry, contact angle measurements, antibacterial tests, etc.). The effect of the structural organization of the PHB/Hmi materials on their in-soil biodegradation at the end of life was analyzed, and key factors providing efficient biodegradation of the PHB/Hmi materials at all stages (from adaptation to mineralization) are highlighted (high surface area and porosity, thin fibers, release of Hmi, etc.). The proposed approach allows for target-oriented preparation and structural design of the functional PHB/Hmi nonwovens when their structural supramolecular organization with a highly developed surface area controls both their service properties as efficient antibacterial materials and in-soil biodegradation upon the end of life.


Assuntos
Materiais Biocompatíveis , Hemina , Animais , Materiais Biocompatíveis/química , Poli-Hidroxibutiratos , Hidroxibutiratos/química , Antibacterianos/química , Estágios do Ciclo de Vida , Morte , Solo
5.
ACS Appl Bio Mater ; 7(4): 2272-2282, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38483839

RESUMO

Hydroxyapatite (HAp) with the chemical formula Ca10(PO4)6(OH)2 is an inorganic material that exhibits morphology and composition similar to those of human bone tissues, making it highly desirable for bone regeneration applications. As one of the most biocompatible materials currently in use, HAp has undergone numerous attempts to enhance its mechanical strength. This research focuses on investigating the influence of magnesium (Mg) incorporation on the structural and mechanical properties of synthesized magnesium-doped hydroxyapatite (MgHAp) samples. Apart from its biocompatibility, Mg possesses a density and elasticity comparable to those of human bone. Therefore, incorporating Mg into HAp can be pivotal for improving bone formation. Previous studies have not extensively explored the structural changes induced by Mg substitution in HAp, which motivated us to revisit this issue. Hydrothermal synthesis technique was used to synthesize MgHAp samples with varying molar concentrations (x = 0, 0.5, 1.0, and 1.5). Theoretical simulation of HAp and MgHAp for obtaining 3D structures has been done, and theoretical X-ray diffraction (XRD) data have been compared with the experimental XRD data. Rietveld analysis revealed the alteration and deviation of lattice parameters with an increase in the Mg content, which ultimately affect the structure as well the mechanical properties of prepared samples. The findings revealed an increase in compressive stress and fracture toughness as the Mg concentration in the composition increased. Furthermore, using a finite-element analysis technique and modeling of the mechanical testing data, the von Mises stress distribution and Young's modulus values were calculated, demonstrating the similarity of the prepared samples to human cortical bone. Biocompatibility assessments using NIH-3T3 fibroblast cells confirmed the biocompatible and bioactive nature of the synthesized samples. MgHAp exhibits great potential for biomedical applications in the dental, orthopedic, and tissue engineering research fields.


Assuntos
Durapatita , Magnésio , Humanos , Durapatita/química , Magnésio/química , Materiais Biocompatíveis/química , Osso e Ossos , Próteses e Implantes
6.
ACS Appl Bio Mater ; 7(4): 2413-2422, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38536097

RESUMO

The interaction between biomaterials and the immune system plays a pivotal role in determining the success or failure of implantable devices. Macrophages, as key orchestrators of immune responses, exhibit diverse reactions that influence tissue integration or lead to implant failure. This study focuses on unraveling the intricate relationship between macrophage phenotypes and biomaterials, specifically hydrogels, by employing THP-1 cells as a model. Through a comprehensive investigation using polysaccharide, polymer, and protein-based hydrogels, our research sheds light on how the properties of hydrogels influence macrophage polarization. Phenotypic observations, biochemical assays, surface marker expression, and gene expression profiles collectively demonstrate the differential macrophage polarization abilities of polysaccharide-, polymer-, and protein-based hydrogels. Moreover, our indirect coculture studies reveal that hydrogels fostering M2 polarization exhibit exceptional wound-healing capabilities. These findings highlight the crucial role of the hydrogel microenvironment in adjusting macrophage polarization, offering a fresh avenue for refining biomaterials to bolster advantageous immune responses and improve tissue integration. This research contributes valuable insights for designing biomaterials with tailored properties that can guide macrophage behavior, ultimately improving the overall success of implantable devices.


Assuntos
Materiais Biocompatíveis , Macrófagos , Materiais Biocompatíveis/química , Cicatrização/genética , Hidrogéis/química , Polissacarídeos , Polímeros/metabolismo
7.
Int J Biol Macromol ; 265(Pt 1): 130792, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479670

RESUMO

The curdlan gel is a natural material produced by bacteria. It utilizes chemical cross-linking reactions to form a 3D porous composite hydrogel, increasing its porosity and water content, and improving its mechanical properties. It can be used in tissue repair and regenerative medicine. Curdlan-Poly(vinyl alcohol) (PVA) composite hydrogel can rapidly swell within 1 min due to its porous structure. Compression tests confirmed that it still maintains its original mechanical strength, even after five repeated freeze-thaw (FT) processes, making it suitable for long-term cryopreservation. The purpose of this study is to transplant umbilical cord mesenchymal stem cells (UC-MSCs) on Curdlan-PVA composite hydrogel and observe the chondrocytes on the material. The results of using 4',6-diamidino-2-phenylindole (DAPI), hematoxylin and eosin (H&E), calcein-acetoxymethyl ester (calcein AM), and Collagen type II-Fluorescein isothiocyanate (FITC) staining, confirmed that UC-MSCs can attach and differentiate into chondrocytes on 3D Curdlan-PVA composite hydrogel.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , beta-Glucanas , Hidrogéis/farmacologia , Hidrogéis/química , Álcool de Polivinil/química , Congelamento , Condrogênese , Materiais Biocompatíveis/química , Etanol
8.
Sci Rep ; 14(1): 7505, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553565

RESUMO

Addressing the increasing drug resistance in pathogenic microbes, a significant threat to public health, calls for the development of innovative antibacterial agents with versatile capabilities. To enhance the antimicrobial activity of non-toxic biomaterials in this regard, this study focuses on novel, cost-effective chitosan (CS)-based hydrogels, crosslinked using gelatin (GEL), formaldehyde, and metallic salts (Ag+, Cu2+, and Zn2+). These hydrogels are formed by mixing CS and GEL with formaldehyde, creating iminium ion crosslinks with metallic salts without hazardous crosslinkers. Characterization techniques like FTIR, XRD, FESEM, EDX, and rheological tests were employed. FTIR analysis showed metal ions binding to amino and hydroxyl groups on CS, enhancing hydrogelation. FESEM revealed that freeze-dried hydrogels possess a crosslinked, porous structure influenced by various metal ions. Antibacterial testing against gram-negative and gram-positive bacteria demonstrated significant bacterial growth inhibition. CS-based hydrogels containing metal ions showed reduced MIC and MBC values against Staphylococcus aureus (0.5, 8, 16 µg/mL) and Escherichia coli (1, 16, 8 µg/mL) for CS-g-GEL-Ag+, CS-g-GEL-Cu2+, and CS-g-GEL-Zn2+. MTT assay results confirmed high biocompatibility (84.27%, 85.24%, 84.96% viability at 10 µg/mL) for CS-based hydrogels towards HFF-1 cells over 48 h. Therefore, due to their non-toxic nature, these CS hydrogels are promising for antibacterial applications.


Assuntos
Quitosana , Quitosana/farmacologia , Quitosana/química , Gelatina/farmacologia , Gelatina/química , Porosidade , Sais , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Metais , Formaldeído , Hidrogéis/farmacologia , Hidrogéis/química , Íons
9.
Chem Soc Rev ; 53(7): 3273-3301, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507263

RESUMO

Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases. In this review, we summarize the design strategies of polymeric biomaterials for the treatment of oral diseases. First, we present the unique oral environment including highly movable and wet, microbial and inflammatory environment, which hinders the effective treatment of oral diseases. Second, a series of strategies for designing polymeric materials towards such a unique oral environment are highlighted. For example, multifunctional polymeric materials are armed with wet-adhesive, antimicrobial, and anti-inflammatory functions through advanced chemistry and nanotechnology to effectively treat oral diseases. These are achieved by designing wet-adhesive polymers modified with hydroxy, amine, quinone, and aldehyde groups to provide strong wet-adhesion through hydrogen and covalent bonding, and electrostatic and hydrophobic interactions, by developing antimicrobial polymers including cationic polymers, antimicrobial peptides, and antibiotic-conjugated polymers, and by synthesizing anti-inflammatory polymers with phenolic hydroxy and cysteine groups that function as immunomodulators and electron donors to reactive oxygen species to reduce inflammation. Third, various delivery systems with strong wet-adhesion and enhanced mucosa and biofilm penetration capabilities, such as nanoparticles, hydrogels, patches, and microneedles, are constructed for delivery of antibiotics, immunomodulators, and antioxidants to achieve therapeutic efficacy. Finally, we provide insights into challenges and future development of polymeric materials for oral diseases with promise for clinical translation.


Assuntos
Anti-Infecciosos , Polímeros , Polímeros/química , Materiais Biocompatíveis/química , Anti-Inflamatórios , Fatores Imunológicos
10.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542232

RESUMO

Chitosan (CS) is a polysaccharide obtainable by the deacetylation of chitin, which is highly available in nature and is consequently low-cost. Chitosan is already used in the biomedical field (e.g., guides for nerve reconstruction) and has been proposed as a biomaterial for tissue regeneration in different body districts, including bone tissue. The interest in chitosan as a biomaterial stems from its ease of functionalization due to the presence of reactive groups, its antibacterial properties, its ease of processing to obtain porous matrices, and its inherent similarity to polysaccharides that constitute the human extracellular matrix, such as hyaluronic acid (HA). Here, chitosan was made to react with succinic anhydride to develop a negatively charged chitosan (SCS) that better mimics HA. FT-IR and NMR analyses confirmed the presence of the carboxylic groups in the modified polymer. Four different electrospun matrices were prepared: CS, SCS, a layer-by-layer matrix (LBL), and a matrix with both CS and SCS simultaneously electrospun (HYB). All the matrices containing SCS showed increased human osteoblast proliferation, mineralization, and gene expression, with the best results obtained with HYB compared to the control (CS). Moreover, the antibacterial potential of CS was preserved in all the SCS-containing matrices, and the pure SCS matrix demonstrated a significant reduction in bacterial proliferation of both S. aureus and E. coli.


Assuntos
Quitosana , Humanos , Quitosana/farmacologia , Quitosana/química , Tecidos Suporte/química , Espectroscopia de Infravermelho com Transformada de Fourier , Escherichia coli , Staphylococcus aureus , Engenharia Tecidual/métodos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Polissacarídeos , Antibacterianos/farmacologia
11.
Biosens Bioelectron ; 254: 116222, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518560

RESUMO

Materials that have the ability to manipulate shapes in response to stimuli such as heat, light, humidity and magnetism offer a means for versatile, sophisticated functions in soft robotics or biomedical implants, while such a reactive transformation has certain drawbacks including high operating temperatures, inherent rigidity and biological hazard. Herein, we introduce biodegradable, self-adhesive, shape-transformable poly (L-lactide-co-ε-caprolactone) (BSS-PLCL) that can be triggered via thermal stimulation near physiological temperature (∼38 °C). Chemical inspections confirm the fundamental properties of the synthetic materials in diverse aspects, and study on mechanical and biochemical characteristics validates exceptional stretchability up to 800 % and tunable dissolution behaviors under biological conditions. The integration of the functional polymer with a bioresorbable electronic system highlights potential for a wide range of biomedical applications.


Assuntos
Técnicas Biossensoriais , Elastômeros , Elastômeros/química , Materiais Biocompatíveis/química , Implantes Absorvíveis , Polímeros/química , Poliésteres/química
12.
J Mater Chem B ; 12(14): 3376-3391, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506117

RESUMO

The applications of calcium phosphates (hydroxyapatite, tetracalcium phosphate, tricalcium phosphate (alpha and beta), fluorapatite, di-calcium phosphate anhydrous, and amorphous calcium-phosphate) are increasing day by day. Calcium hydroxyapatite, commonly known as hydroxyapatite (HAp), represents a mineral form of calcium apatite. Owing to its close molecular resemblance to the mineral constituents of bones, teeth, and hard tissues, HAp is often employed in the biomedical domain. In addition, it is extensively employed in various sectors such as the remediation of water, air, and soil pollution. The key advantage of HAp lies in its potential to accommodate a wide variety of anionic and cationic substitutions. Nevertheless, HAp and tricalcium phosphate (TCP) syntheses typically involve the use of chemical precursors containing calcium and phosphorus sources and employ diverse techniques, such as solid-state, wet, and thermal methods or a combination of these processes. Researchers are increasingly favoring natural sources such as bio-waste (eggshells, oyster shells, animal bones, fish scales, etc.) as viable options for synthesizing HAp. Interestingly, the synthesis route significantly influences the morphology, size, and crystalline phase of calcium phosphates. In this review paper, we highlight both dry and wet methods, which include six commonly used synthesis methods (i.e. solid-state, mechano-chemical, wet-chemical precipitation, hydrolysis, sol-gel, and hydrothermal methods) coupled with the variation in source materials and their influence in modifying the structural morphology from a bulky state to nanoscale to explore the applications of multifunctional calcium phosphates in different formats.


Assuntos
Materiais Biocompatíveis , Cálcio , Animais , Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , Durapatita/química
13.
J Mater Chem B ; 12(14): 3494-3508, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512116

RESUMO

Magnetite (Fe3O4) nanoparticle (MNP)-substituted glass-ceramic (MSGC) powders with compositions of (45 - x)SiO2-24.5CaO-24.5Na2O-6P2O5-xFe3O4 (x = 5, 8, and 10 wt%) have been prepared by a sol-gel route by introducing Fe3O4 nanoparticles during the synthesis. The X-ray diffraction patterns of the as-prepared MSGC nanopowders revealed the presence of combeite (Na2Ca2Si3O9), magnetite, and sodium nitrate (NaNO3) crystalline phases. Heat-treatment up to 700 °C for 1 h resulted in the complete dissolution of NaNO3 along with partial conversion of magnetite into hematite (α-Fe2O3). Optimal heat-treatment of the MSGC powders at 550 °C for 1 h yielded the highest relative percentage of magnetite (without hematite) with some residual NaNO3. The saturation magnetization and heat generation capacity of the MSGC fluids increased with an increase in the MNP content. The in vitro bioactivity of the MSGC pellets was evaluated by monitoring the pH and the formation of a hydroxyapatite surface layer upon immersion in modified simulated body fluid. Proliferation of MG-63 osteoblast cells indicated that all of the MSGC compositions were non-toxic and MSGC with 10 wt% MNPs exhibited extraordinarily high cell viability. The MSGC with 10 wt% MNPs demonstrated optimal characteristics in terms of cell viability, magnetic properties, and induction heating capacity, which surpass those of the commercial magnetic fluid FluidMag-CT employed in hyperthermia treatment.


Assuntos
Materiais Biocompatíveis , Compostos Férricos , Nanopartículas de Magnetita , Materiais Biocompatíveis/química , Dióxido de Silício/química , Óxido Ferroso-Férrico , Calefação , Cerâmica/farmacologia , Cerâmica/química
14.
Nano Lett ; 24(13): 4029-4037, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526438

RESUMO

The mechanical interaction between cells and the extracellular matrix is pervasive in biological systems. On fibrous substrates, cells possess the ability to recruit neighboring fibers, thereby augmenting their own adhesion and facilitating the generation of mechanical cues. However, the matrices with high moduli impede fiber recruitment, restricting the cell mechanoresponse. Herein, by harnessing the inherent swelling properties of gelatin, the flexible gelatin methacryloyl network empowers cells to recruit fibers spanning a broad spectrum of physiological moduli during adhesion. The high flexibility concurrently facilitates the optimization of fiber distribution, deformability, and modulus, contributing to the promotion of cell mechanosensing. Consequently, the randomly distributed flexible fibers with high moduli maximize the cell adhesive forces. This study uncovers the impact of fiber recruitment on cell mechanosensing and introduces fiber flexibility as a previously unexplored property, offering an innovative perspective for the design and development of novel biomaterials.


Assuntos
Materiais Biocompatíveis , Matriz Extracelular , Materiais Biocompatíveis/química , Matriz Extracelular/química , Módulo de Elasticidade
15.
Science ; 383(6690): 1492-1498, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547269

RESUMO

Transient implantable piezoelectric materials are desirable for biosensing, drug delivery, tissue regeneration, and antimicrobial and tumor therapy. For use in the human body, they must show flexibility, biocompatibility, and biodegradability. These requirements are challenging for conventional inorganic piezoelectric oxides and piezoelectric polymers. We discovered high piezoelectricity in a molecular crystal HOCH2(CF2)3CH2OH [2,2,3,3,4,4-hexafluoropentane-1,5-diol (HFPD)] with a large piezoelectric coefficient d33 of ~138 picocoulombs per newton and piezoelectric voltage constant g33 of ~2450 × 10-3 volt-meters per newton under no poling conditions, which also exhibits good biocompatibility toward biological cells and desirable biodegradation and biosafety in physiological environments. HFPD can be composite with polyvinyl alcohol to form flexible piezoelectric films with a d33 of 34.3 picocoulombs per newton. Our material demonstrates the ability for molecular crystals to have attractive piezoelectric properties and should be of interest for applications in transient implantable electromechanical devices.


Assuntos
Materiais Biocompatíveis , Compostos Férricos , Polímeros , Biodegradação Ambiental , Polímeros/química , Polímeros/metabolismo , Álcool de Polivinil/química , Álcool de Polivinil/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Eletricidade , Animais , Ratos , Ratos Sprague-Dawley , Compostos Férricos/química , Compostos Férricos/metabolismo
16.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473922

RESUMO

Load-bearing biological tissues, such as cartilage and muscles, exhibit several crucial properties, including high elasticity, strength, and recoverability. These characteristics enable these tissues to endure significant mechanical stresses and swiftly recover after deformation, contributing to their exceptional durability and functionality. In contrast, while hydrogels are highly biocompatible and hold promise as synthetic biomaterials, their inherent network structure often limits their ability to simultaneously possess a diverse range of superior mechanical properties. As a result, the applications of hydrogels are significantly constrained. This article delves into the design mechanisms and mechanical properties of various tough hydrogels and investigates their applications in tissue engineering, flexible electronics, and other fields. The objective is to provide insights into the fabrication and application of hydrogels with combined high strength, stretchability, toughness, and fast recovery as well as their future development directions and challenges.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Hidrogéis/química , Materiais Biocompatíveis/química , Engenharia Tecidual , Elasticidade , Cartilagem
17.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474185

RESUMO

Poly(propylene carbonate) (PPC) is an emerging "carbon fixation" polymer that holds the potential to become a "biomaterial of choice" in healthcare owing to its good biocompatibility, tunable biodegradability and safe degradation products. However, the commercialization and wide application of PPC as a biomedical material are still hindered by its narrow processing temperature range, poor mechanical properties and hydrophobic nature. Over recent decades, several physical, chemical and biological modifications of PPC have been achieved by introducing biocompatible polymers, inorganic ions or small molecules, which can endow PPC with better cytocompatibility and desirable biodegradability, and thus enable various applications. Indeed, a variety of PPC-based degradable materials have been used in medical applications including medical masks, surgical gowns, drug carriers, wound dressings, implants and scaffolds. In this review, the molecular structure, catalysts for synthesis, properties and modifications of PPC are discussed. Recent biomedical applications of PPC-based biomaterials are highlighted and summarized.


Assuntos
Materiais Biocompatíveis , Polímeros , Propano/análogos & derivados , Materiais Biocompatíveis/química , Polímeros/química , Próteses e Implantes
18.
Biophys Chem ; 308: 107216, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479205

RESUMO

In the realm of biomedical engineering and materials science, the synthesis of biomaterials plays a pivotal role in advancing therapeutic strategies for regeneration of tissues. The deliberate control of crystallization processes in biomaterial synthesis has emerged as a key avenue for tailoring the properties of these materials, enabling the design of innovative solutions for a wide array of medical applications. This review delves into the interplay between controlled crystallization and biomaterial synthesis, exploring its multifaceted applications in the therapeutic domains. The investigation encompasses a wide spectrum of matrices, ranging from small molecules to large biomolecules, highlighting their unique contributions in modulating crystallization processes. Furthermore, the review critically assesses the analytical techniques and methodologies employed to probe and characterize the depths of crystallization dynamics. Advanced imaging, spectroscopic, and computational tools are discussed in the context of unraveling the intricate mechanisms governing nucleation and crystallization processes within the organic matrix. Finally we delve in the applications of such advance material in therapeutics of hard and soft tissues.


Assuntos
Materiais Biocompatíveis , Cristalização , Materiais Biocompatíveis/química
19.
Appl Microbiol Biotechnol ; 108(1): 264, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489042

RESUMO

Cyanophycin (CGP) is a polypeptide consisting of amino acids-aspartic acid in the backbone and arginine in the side chain. Owing to its resemblance to cell adhesive motifs in the body, it can be considered suitable for use in biomedical applications as a novel component to facilitate cell attachment and tissue regeneration. Although it has vast potential applications, starting with nutrition, through drug delivery and tissue engineering to the production of value-added chemicals and biomaterials, CGP has not been brought to the industry yet. To develop scaffolds using CGP powder produced by bacteria, its properties (e.g., biocompatibility, morphology, biodegradability, and mechanical strength) should be tailored in terms of the requirements of the targeted tissue. Crosslinking commonly stands for a primary modification method for renovating biomaterial features to these extents. Herein, we aimed to crosslink CGP for the first time and present a comparative study of different methods of CGP crosslinking including chemical, physical, and enzymatic methods by utilizing glutaraldehyde (GTA), UV exposure, genipin, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS), and monoamine oxidase (MAO). Crosslinking efficacy varied among the samples crosslinked via the different crosslinking methods. All crosslinked CGP were non-cytotoxic to L929 cells, except for the groups with higher GTA concentrations. We conclude that CGP is a promising candidate for scaffolding purposes to be used as part of a composite with other biomaterials to maintain the integrity of scaffolds. The initiative study demonstrated the unknown characteristics of crosslinked CGP, even though its feasibility for biomedical applications should be confirmed by further examinations. KEY POINTS: • Cyanophycin was crosslinked by 5 different methods • Crosslinked cyanophycin is non-cytotoxic to L929 cells • Crosslinked cyanophycin is a promising new material for scaffolding purposes.


Assuntos
Materiais Biocompatíveis , Tecidos Suporte , Tecidos Suporte/química , Materiais Biocompatíveis/química , Proteínas de Bactérias , Engenharia Tecidual/métodos , Glutaral , Reagentes de Ligações Cruzadas/química
20.
Biofabrication ; 16(2)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38507799

RESUMO

The application of additive manufacturing (AM) technology plays a significant role in various fields, incorporating a wide range of cutting-edge technologies such as aerospace, medical treatment, electronic information, and materials. It is currently widely adopted for medical services, national defense, and industrial manufacturing. In recent years, AM has also been extensively employed to produce bone scaffolds and implant materials. Through AM, products can be manufactured without being constrained by complex internal structures. AM is particularly advantageous in the production of macroscopically irregular and microscopically porous biomimetic bone scaffolds, with short production cycles required. In this paper, AM commonly used to produce bone scaffolds and orthopedic implants is overviewed to analyze the different materials and structures adopted for AM. The applications of antibacterial bone scaffolds and bone scaffolds in biologically relevant animal models are discussed. Also, the influence on the comprehensive performance of product mechanics, mass transfer, and biology is explored. By identifying the reasons for the limited application of existing AM in the biomedical field, the solutions are proposed. This study provides an important reference for the future development of AM in the field of orthopedic healthcare. In conclusion, various AM technologies, the requirements of bone scaffolds and the important role of AM in building bridges between biomaterials, additives, and bone tissue engineering scaffolds are described and highlighted. Nevertheless, more caution should be exercised when designing bone scaffolds and conducting in vivo trials, due to the lack of standardized processes, which prevents the accuracy of results and reduces the reliability of information.


Assuntos
Materiais Biocompatíveis , Tecidos Suporte , Animais , Reprodutibilidade dos Testes , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Tecidos Suporte/química , Engenharia Tecidual , Osso e Ossos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...